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Abstract 

In this paper we introduce Basic Elements, a 

new way of automating the evaluation of text 

summaries.  We show that this method corre-

lates better with human judgments than any 
other automated procedure to date, and over-

comes the subjectivity/variability problems of 

manual methods that require humans to pre-

process summaries to be evaluated. This is 

demonstrated on DUC 2005 peer systems and 

peer-produced summaries.   

1 Introduction  

When a language technology area develops a standard 

corpus on which to develop its techniques plus an auto-

mated method of evaluating results to drive develop-

ment, progress tends to speed up dramatically. 

It has long been a goal of the text summarization 

community to find automatic methods for summary 
evaluation that produce reliable and stable scores.  All 

automated methods today work by comparing the sys-

tem’s summary to one of more reference summaries 

(ideally, produced by humans).  But even leaving aside 

the problems of evaluating style and focusing just on 

summary content, evaluation has proven problematic.  

Experience has shown that measuring content at sen-

tence granularity is not precise enough: generally sen-

tences contain too many distinct pieces of information, 

some of which may be important to include in a sum-

mary and some of which not.  However, comparing con-
tent at the word level is also not satisfactory: a word 

taken individually cannot be rated since it may play 

roles of various importance in various contexts with 

other words.   

People have tried to overcome this problem by 

manually bracketing in the summary to be evaluated 

units of varying lengths that contain just the ‘important’ 

information, which a subsequent procedure (manual or 

automatic) can then rate.  But this approach introduces 

human variability and typically incurs a significant ef-

fort.   

In this paper we describe an automated method to 

produce useful chunks of varying size, and show that 

this method equals other automated methods of scoring 

summaries.  We introduce Basic Elements (BEs) in Sec-

tion 2.  Section 3 provides details and Section 4 the re-

sults of evaluation by BEs on DUC 2005. Conclusions 

and some future work are given in Section 5.    

2 Basic Elements  

2.1 Definition  

We address the problem of unit size by automatically 
producing a series of increasingly larger units, starting 

at the single word level.  Unit importance can be deter-

mined by a variety of automated ways, described below.  

We address the problem of unit comparability by focus-

ing on small-sized units, where paraphrase alternatives 

are rather limited.   

In this approach, we break down each reference sen-

tence into a set of minimal semantic units, which we 

call Basic Elements (BEs).  After some experimenta-

tion, we have decided to define BEs as follows:   

• the head of a major syntactic constituent (noun, 

verb, adjective or adverbial phrases), expressed as a 
single item, or  

• a relation between a head-BE and a single depend-

ent, expressed as a triple (head | modifier | relation).  

Starting small like this allows one to automate the proc-

ess of unit identification and, to some degree, facilitates 

the matching of different equivalent expressions.  

Grouping smaller units into larger ones can be done 

automatically, even, we believe, to the larger-sized 

chunks typically used in the Pyramid Method.   

As described below, we can produce BEs automati-

cally in several ways   Most of them involve a syntactic 
parser to produce a parse tree and a set of ‘cutting rules’ 

to extract just the valid BEs from the tree.   



With units of minimal length, one can much more 

easily decide whether any two units match (express the 

same meaning) or not.  For instance, “United Nations”, 

“UN”, and “UNO” can be matched at this level (but 

require work to isolate within a longer unit or a sen-

tence), allowing any larger unit encompassing this to 
accept any of the three variants.  Also, since the units 

are matched at the lowest levels, the danger of poten-

tially double-counting segments that are contained in 

longer ones can also be avoided.   

2.2 The Four Aspects of BEs  

In order to implement Basic Elements as a method of 

evaluating summary content, four core questions must 

be addressed:   

1. What or how large is a Basic Element?  The answer 

to this is strongly conditioned by: How can BEs be 

created automatically?  

2. How important is each BE?  What basic score 

should each BE have?   

3. When do two BEs match?  What kinds of matches 
should be implemented, and how?  

4. How should an overall summary score be derived 

from the individual matched BEs’ scores?   

Different answers to each of these questions provide a 

different summary evaluation method.  The Pyramid 

Method, for example, takes as BEs approximately 

clause-length semantic units shared by the reference 

summaries; gives each unit a score equal to the number 

of reference summaries containing it; allows two units 

to match when they express all or most of the same se-

mantic content, as judged by the assessors; and derives 
the overall score by summing the scores of each unit of 

the candidate summary and normalized by the overall 

score of an ideal summary of equal size.  In contrast, 

ROUGE uses as BEs various ngrams (for example, uni-

grams); scores each unigram by a function that depends 

on the number of reference summaries containing that 

unigram; allows unigrams to match under various pa-

rameterizable conditions (for example, exact match 

only, or root form match); and derives the overall sum-

mary score by some weighted combination function of 

unigram matches.   

The BE Package is an overall framework in which 
various solutions to the four core aspects are imple-

mented, and which therefore serves as a generalization 

over the particular methods and as an environment in 

which they can be compared.   

There are multiple possible approaches to imple-

menting each of these four points in software. There-

fore, exploring the whole space in order to find the most 

stable and optimum evaluation configuration is not a 

trivial task.  The current BE Package (Section 6) pro-

vides several parameterized modules as well as APIs for 

people wishing to build and test their own.  Used as 

provided, the BE Package provides several implementa-

tions of the ideas of Van Halteren, Teufel, Nenkova, and 

Passonneau.  We have performed a series of experi-

ments to obtain reasonably good modules and parameter 

settings, but welcome additional studies and improve-
ments.   

3 The BE Method 

The BE Package contains instances of four principal 

modules: the BE Breakers (that create individual BE 

units, given a text), the BE Scorers (that assign scores to 

each BE unit individually), the BE Matcher modules 

(that rate the similarity of any two BE units), and the BE 

Score Integrators (that produce a total score given a list 

of rated BE units).  We have implemented and tested 

versions of each of these modules, and in some cases 

multiple versions.  After outlining the procedure we 

discuss each module in turn.   

3.1 The BE Procedure  

The task is to provide a numeric score that reflects the 

quality of a given summary.  Input to the BE Package is 
a set of reference (gold standard) summaries and the 

given summary to be rated.  The Package first creates a 

set of BEs for each reference summary and integrates 

the sets by matching the individual BEs to obtain a sin-

gle list of rated BEs, ranked from most valuable to least.  

(This first step needs of course not be repeated for sub-

sequent use of the same reference summaries.)  The 

summary to be evaluated is then also subjected to the 

BE breaker, and its BEs are matched against the ranked 

BE list.  Matched BEs’ scores are integrated and the 

resulting score is returned.   

3.2 Creating Units: The BE Breaker Module 

The BE Breaker accepts a sentence as input and pro-
duces a list of BEs as output.  Different BE Breakers 

produce different BEs.  The intuition behind a BE is that 

it should be a single coherent semantic unit, such as 

“United States of America”, “coffee mug”, “the/a plane 

landed”, “the landing was safe”, etc.  There is much 

room for discussion here, but the basic desiderata are: 

small size (to allow proper scoring of atomic bits of 

content), regularity/simplicity of definition, and auto-

matic production.   

As mentioned above, some experimentation led us to 

(for the present) define BEs as follows:   

• the head of a major syntactic con-
stituent (noun, verb, adjective or 
adverbial phrases), or  

• a relation between a head-BE and a 
single dependent.   



Some BE breaker modules provide the relations; others 

do not.   

We presently produce BEs in several ways.  Most of 

them involve a syntactic parser to produce a parse tree 

and a set of ‘cutting rules' to extract just the valid BEs 

from the tree.  We have built and experimented with the 
following BE breakers: 

• Charniak parser + CYL rules (abbrev. as BE-L)  

• Collins parser + LZ rules (abbrev. as BE-Z) 

• Minipar + JF rules (abbrev. as BE-F) 

• Microsoft parser1 (Heidorn, 2000) + cutting rules  

BE-F: BE-F extracts BEs from parses generated by 

Minipar (Lin, 1995).  Minipar produces a dependency 

parse of a sentence, in which each word is related to 

another word with labels such as subj (subject), obj (ob-

ject), comp1 (complement), mod (modifier), etc.  BE-F 

extracts word pairs in some dependency relationship 

and generates a BE element.   
During preprocessing for BE-F, compound nouns and 

verbal idioms such as 'turn over' and ‘Secretary General' 

are converted to single parse tree nodes using Minipar 

information.  After parsing, BE-F reifies embedded ten-

tative nodes that express semantic subject or object with 

semantic nodes.  BE-F then extracts BEs from depend-

ency relationships in the parse tree.  For PPs, the PP 

head is related by its preposition to its governing ele-

ment (e.g., for ‘against Libya’ modifying the word 

‘sanction’, the extracted BE will be [sanction | Libya | 

against]).  In an embedded clause such as ‘that clause’, 
the main verb of the embedded clause has a relationship 

with the modifying verb.  If there is no subject word in 

such an embedded clause, its semantic subject and its 

main verb form a BE with the relationship ‘subject’ 

(and similarly for the case of ‘object’).   

BE-L: BE-L is based on constituency parse trees gener-

ated by Charniak’s statistical parser (Charniak 2000).  

Converting a constituency parse tree into dependency 

triples is not new; Lin (1995) proposed a method based 

on Magerman’s (1994) head finding rules.  A similar 

approach was used in Collins’s PCFG parser (1999).  

We followed the same approach, applying Magerman’s 
head finding rule to extract head-modifier dependencies.  

In order to identify the semantic relation between head 

and modifier, we trained a semantic role labeler using 

SVM based on PropBank data.  Due to space limita-

tions, we cannot provide details about the semantic la-

beler.  However, its accuracy on the core argument 

identification (ARG0-5) was at about 93%.  Examples 

from BE-L are shown below: 

                                                        

1 We are indebted to Lucy Vanderwende and her group at 
Mircosoft for parsing our test collection and allowing us to 
experiment with the results.   

“Two Libyans were indicted for the Lockerbie bomb-

ing in 1991.” 

  <Libyans|two|CARDINAL> 

  <indicted|Libyans|ACCUSED> 

  <indicted|bombing|CRIME> 

  <indicted|1991|TIME> 
 

Although BE-L achieves performance similar to BE-

F and includes semantic labels for relations, it is much 

slower than BE-F.  The speed bottleneck is mainly due 

to Charniak’s parser and the extra time needed to carry 

out semantic labeling of head-modifier relations.   

BE-Z: BE-Z applies the Collins parser (Collins, 1999) 

and then a different set of cutting rules.   

All three sets of cutting rules were developed inde-

pendently, and hence the three engines produce some-

what different results.  No single engine always 

produces the best results, since different parsers and 
rules operate differently well on different sentence con-

structions (especially with long sentences).  We have 

experimented with combining the BEs from the differ-

ent engines into a single list, but for simplicity of devel-

opment and eventual distribution (different parsers have 

different license requirements) we decided to work with 

engines individually for now.   

Example BEs for “two Libyans were indicted for the 

Lockerbie bombing in 1991” are as follows, written as 

(head | modifier | relation):   

Libyans|NIL|NIL     (BE-L) 
Libyans|two|NIL          (BE-L) 

bombing|NIL|NIL        (BE-L) 

bombing|Lockerbie|NIL  (BE-L) 

indicted|NIL|NIL       (BE-L) 

indicted|Libyans|ARG1    (BE-L) 

indicted|1991|ARGM-TMP    (BE-L) 

indicted|bombing|ARG2     (BE-L) 

libyans|two|nn         (BE-F) 

indicted|libyans|obj       (BE-F) 

bombing|lockerbie|nn    (BE-F) 

indicted|bombing|for      (BE-F) 

bombing|1991|in         (BE-F) 

A typical relation set may be {MOD} or {ARGn 

AUX MOD}. BE-L uses PropBank style semantic rela-

tions.   

In the past, we have recommended BE-F.  However, 

recently work has shown that BE-L does even better at 

corresponding to human judgments.  We are pleased 

that the basic idea of BEs is borne out in different im-

plementations. Other breakers will follow in later re-

leases of the package. For research continuity, we 

continue to recommend BE-F.   

Although we have experimented with multi-word 
proper name units (treating "United Nations" as a single 



Table 2. Correlation b/w BE and responsive-

BE, which allows it to match "UN", for example), we 

cannot distribute this portion of the BE breakers and 

matchers, because it relies on a proper name identifier.  

We use BBN's IdentiFinder, which may be licensed 

from BBN (http://www.bbn.com/).  An alternative is 

InXight's Thingfinder, which may be purchased from 
InXight (http://www.inxight.com/).   

3.3 Scoring Units 

In the present implementation, each BE gets exactly 1 

point for each reference summary it participates in.  

This score is weighted depending on the completeness 

of the match between the BE and the reference BEs, as 

described immediately below.  We have not experi-

mented with different weights based on words’ informa-

tion content, etc., although one can obviously do so.   

3.4 Comparing and Matching Units  

Matching BEs is less difficult than matching whole 

phrases, because less variation is possible.  Nonetheless, 

we have identified a range of increasingly sophisticated 

matching strategies, some of which we do not know 

how to implement (arranged from strictest/easiest to 

most sophisticated):   

• lexical identity: the words must match exactly, 

without alteration (implemented)  

• lemma identity: the root forms of the words must 

match (implemented; root forms are obtained from 

WordNet)  

• synonym identity: the words or any of their syno-

nyms match.  Synonyms may be obtained from 

WordNet, for example (not implemented yet)  

• distributional similarity: words are similar accord-

ing to the cosine distance on mutual information-

based distributional similarity scores, obtained from 
the clustering package CBC (Lin and Pantel, 2002)  

• (approximate) phrasal paraphrase matching (not 

implemented)  

• semantic generalization match: BE words are re-

placed by semantic generalizations (“Mother 

Theresa” replaced by “human”) and then matched, 

at a variety of levels of abstraction.  This method 

has been implemented and tested but not distrib-

uted, since this relies on named entity identification 

and on WordNet  

The default is exact lexical identity.  The user can al-

ternatively specify lemma identity.   
Matching of triplet BEs can either include or ignore 

the BEs’ relations, at the user’s choice.  In the current 

release, only strict lexical matching is provided.  De-

pending on whether relation is being matched or not, all 

three (head, modifier, and relation) or only the first two 

fields have to match completely.   

Future more sophisticated matcher modules should 

be able to recognize the equivalence (or partial-score 

equivalence) or such pairs as “approximately $20 mil-

lion” and “19.8 million dollars”; anaphoric coreference 

“he said” and “Joe said”; abbreviations; and metonymy 

“Washington announced” and “The US government 
announced”.   

3.5 Combining Scores and Ranking Units  

The implemented score adder module simply adds the 

point values of each BE in the summary to be evaluated.  

Optimizing the score integration function is a research 

task left for later, when a larger corpus of human judg-

ments is available.   

3.6 BEs and ROUGE  

Note that ROUGE itself is also an instance of the BE 

framework, in which the BEs are unigrams (or ngrams 

of various types, depending on the parameter choice), 

the scoring function is simple unit points, and the sim-

plest matching criterion is lexical identity.  ROUGE 

scores can be requested as p art of the output of the BE 

Package.   

4 Judging DUC 2005 

4.1 System Ranking 

The BE package can be run in two separate parameter-

izations, HM (head-modifier) and HMR (head-modifier-
relation). Table 1 shows the system ranking produced 

by running with HMR. 

4.2 Correlation: BE vs. Responsiveness 

NIST computed the average scaled responsiveness score 

of each summarizer across all topics. To validate BE, 

we computed the Spearman rank coefficient and Pear-

son coefficient between BE and responsiveness scores. 

A high correlation is found, as shown in Table 2.  

 

4.3 Correlation: BE vs. ROUGE 

Table 3 shows the correlation between BE and ROUGE. 

The ROUGE scores are macro-averaged by NIST.  

 



Table 1. System ranking by BE-HMR.  

 

 

 

4.4 Correlation Overview 

In Figure 1 we show the overall correlation be-
tween ROUGE, BE, responsiveness, and the 

Pyramid method. The label on each link indicates 

the parameterization, the Spearman rank coeffi-
cient, and the Pearson coefficient between the met-

rics connected by the link.  Correlations shown 

here are computed by comparing against the pri-

mary NIST human responsiveness assessment 
scores. Only 20 topics, those used in the Pyramid 

annotations, were used to compute the scores for 

all four methods. The Pyramid scores were com-
puted using the model/reference summaries in-

volved in the annotation process. And the 

responsiveness, ROUGE, and BE scores were 
computed against all 9 model/reference summaries. 

Correlation figures published elsewhere may have 

used different number of model summaries or 

number of topics.  

5 Conclusions and Future Work 

Given the number of potential alternatives embodied in 

the BE Package, the amount of work required to deter-
mine the optimal combination of parameters and tech-

niques is enormous.  We are however very encouraged 

by the fact that the first and major bottleneck, the auto-

mated creation of minimal BEs, seems to have been 

addressed adequately for now, given by different BE 

breaker modules (different parsers and different BE 

chunking rules) independently.   

The most pressing problem remaining is developing 

powerful BE matching routines; if one can match mini-

mal BEs (and paraphrases) accurately then building 

matchers for compound BEs should be an interesting 

Table 3. Correlation b/w BE and macroavg 

ROUGE.  

Figure 1. Correlation overview. 



but not impossibly difficult exercise.  Similarly, deter-

mining optimal weighting functions for individual BEs 

and for their combination to maximize correlations with 

human judgments requires careful but not impossibly 

hard work, and resembles the work recently done by Lin 

on ROUGE.   
Finally, it is of particular interest to see whether one 

can reconstitute within the BE framework an exact 

automated version of the factoid work of Van Halteren 

and Teufel and the pyramid method of Nenkova and 

Passonneau.   
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